Fluid, Electrolyte, and Acid-Base Homeostasis

- Edema – review discussion from capillary exchange as to causes

- Electrolyte Balance – usually pertains to salts in the body – most important

 Sodium

 Potassium

 Calcium
Fluid, Electrolyte, and Acid-Base Homeostasis

- Central Role of Sodium in the Body and Fluid and Electrolyte Balance
 - Involved in
 - Impulse transmission
 - Muscle contraction
 - Creates most of the osmotic pressure in the extracellular fluid
 - Average daily intake far greater than required, kidneys excrete the excess
 - Levels in blood regulated by
 - Aldosterone
 - Antrial Natriuretic Peptide (ANP)
 - Antidiuretic Hormone (ADH)
Fluid, Electrolyte, and Acid-Base Homeostasis

- ↓ Na⁺ or ↑ K⁺ concentration in blood plasma
- Renin-angiotensin mechanism
 - Stimulates
 - Adrenal cortex
 - Releases
 - Aldosterone
 - Targets
 - Kidney tubules
 - Effects
 - ↑ Na⁺ reabsorption
 - ↑ K⁺ secretion
 - Restores
 - Homeostatic plasma levels of Na⁺ and K⁺
Fluid, Electrolyte, and Acid-Base Homeostasis

- Regulation of Potassium Ions – most abundant cation in intracellular fluid
 - Involved in:
 - Maintaining fluid volume
 - Impulse conduction
 - Muscle contraction
 - Regulating pH
 - Regulated by:
 - Mostly aldosterone
 - Hyperkalemia – can cause death by inducing fibrillation
Fluid, Electrolyte, and Acid-Base Homeostasis

- Regulation of Calcium Ions – most abundant ion in the body, mostly extracellular in nature
 - Involved in:
 - Structural portion of bones and teeth
 - Blood coagulation
 - Maintenance of muscle tone
 - Excitability of nervous and muscle tissue
 - Regulated by:
 - Parathyroid Hormone (PTH, Parathormone)
 - Calcitonin (CT)
 - Hypocalcemia – causes
 - Increased calcium loss
 - Reduced calcium intake
 - Elevated levels of phosphate in blood
 - Impaired parathyroid function
 - Hypercalcemia – causes
 - Opposite of above
Fluid, Electrolyte, and Acid-Base Homeostasis

- Regulation of Anions
 - Cl⁻
 - Typically follows Na⁺
 - Aids in maintaining osmolarity of blood
 - During acidosis kidneys reabsorb more HCO₃⁻ (more in a bit) and excrete more Cl⁻
 - Most other anions have their own carrier molecules and as such demonstrate renal thresholds for reabsorption
Fluid, Electrolyte, and Acid-Base Homeostasis

Acid – Base Balance

Norma range 7.35 – 7.45

Alkalosis above 7.45
Acidosis below 7.35

• Chemical Buffer Systems

 – Resist a change in pH upon the addition of an acid or a base

 – Composed of a weak acid and a salt of that acid
Fluid, Electrolyte, and Acid-Base Homeostasis

- Bicarbonate Buffer System
 - Made up of
 - Carbonic acid and salt of carbonic acid (sodium bicarbonate)
 \[\text{H}_2\text{CO}_3 \text{ and NaHCO}_3 \]
 - Very important in buffering the extracellular fluid

- Phosphate Buffer System
 - Made up of
 - Dihydrogen Phosphate and Monhydrogen Phosphate
 \[\text{NaH}_2\text{PO}_4 \text{ and Na}_2\text{HPO}_4 \]
 - Very important intracellular buffer
Fluid, Electrolyte, and Acid-Base Homeostasis

- Protein Buffer System
 - Are amphoteric – one end can act like a base and the other an acid
 - Example – Hb as discussed earlier with the chloride shift

- Respiratory Regulation of H⁺
 - Respiratory acidosis
 - Respiratory alkalosis
Fluid, Electrolyte, and Acid-Base Homeostasis

• Renal Mechanisms of Acid-Base Balance – used to remove fixed (metabolic) acids [lactic acid, ketone bodies, etc.]

 – Involves

 • Secretion of H^+

 • Regeneration of HCO_3^-
Fluid, Electrolyte, and Acid-Base Homeostasis

- Abnormalities of Acid-Base Balance
 - Respiratory Acidosis and Alkalosis
 - Metabolic Acidosis and Alkalosis
 - Normal Values
 - pH 7.35 – 7.45
 - P_{CO_2} 35 – 45 mmHg
 - HCO_3^- 22 -26 mEq/L
Fluid, Electrolyte, and Acid-Base Homeostasis

• Problem Solving

 – Patient 1 Values

 • pH 7.5
 • P_{CO_2} 24 mmHg
 • HCO_3^- 18 mEq/L

 – Patient 2 Values

 • pH 7.48
 • P_{CO_2} 46
 • HCO_3^- mEq/L