Fluid, Electrolyte, and Acid-Base Homeostasis

Water, acid, base, and electrolyte levels are maintained within a very narrow range – To do this many systems must be directly involved

Urinary
Respiratory
Gastrointestinal
Integumentary
Endocrine

Others are indirectly involved
Fluid, Electrolyte, and Acid-Base Homeostasis

- Body Fluids – divided into two major compartments

![Fluid compartments diagram]

- Total body water volume = 40 L, 60% body weight
- Extracellular fluid volume = 15 L, 20% body weight
- Intracellular fluid volume = 25 L, 40% body weight
- Interstitial fluid volume = 12 L, 80% of ECF
- Plasma volume = 3 L, 20% of ECF
Fluid, Electrolyte, and Acid-Base Homeostasis

• Composition of Body Fluids

 – Electrolytes and Nonelectrolytes

 – Electrolyte concentrations measured in millequivalents per liter (mEq/L) – *the number of electrical charges in a liter of solution* – to determine concentration of an electrolyte

\[
m\text{Eq/L} = \frac{\text{(ion conc. mg/l)} \times \# \text{ of electrical charges on one ion}}{\text{atomic weight of ion}}
\]

\[
\text{Na}^+ \quad \text{Ca}^{2+}
\]

\[
\frac{3300 \text{ mg/l}}{23} \times 1 = 143 \text{ mEq/L}
\]

\[
\frac{100 \text{ mg/L}}{40} \times 2 = 5 \text{ mEq/L}
\]
Fluid, Electrolyte, and Acid-Base Homeostasis

- Comparison of Extracellular and Intracellular Fluids

Key to fluids:
- Red = Blood plasma
- Blue = Interstitial fluid
- Yellow = Intracellular fluid

Key to symbols:
- \(\text{Na}^+ \) = Sodium
- \(\text{K}^+ \) = Potassium
- \(\text{Ca}^{2+} \) = Calcium
- \(\text{Mg}^{2+} \) = Magnesium
- \(\text{HCO}_3^- \) = Bicarbonate
- \(\text{Cl}^- \) = Chloride
- \(\text{HPO}_4^{2-} \) = Hydrogen phosphate
- \(\text{SO}_4^{2-} \) = Sulfate

Total solute concentration (mEq/L)
Fluid, Electrolyte, and Acid-Base Homeostasis

- Fluid Movements Among Compartments

As blood flows through lungs, CO$_2$ is removed and O$_2$ is added.

Kidneys clear plasma filtrate of nitrogenous wastes, ion excesses, etc.

CO$_2$ and metabolic wastes move out of cells.

Nutrients and O$_2$ move into cells.
Fluid, Electrolyte, and Acid-Base Homeostasis

- Water Balance and ECF Osmolarity
Fluid, Electrolyte, and Acid-Base Homeostasis

• Regulation of Water Intake

 – Thirst Mechanism

 • Increasing osmolarity of blood (2 – 3 %)

 – Stimulates osmoreceptors in hypothalamus

 – Less saliva produced

 » Dry mouth

 • Decrease in Fluid Volume

 – Angiotensin II
Fluid, Electrolyte, and Acid-Base Homeostasis
Fluid, Electrolyte, and Acid-Base Homeostasis

• Regulation of Water Output
 - Obligatory Water Loss – loss is unavoidable
 • Insensible
 • Feces
 • Sensible Water Loss – amount needed to remove waste products (approx. 500 ml/day)

• Influence of ADH
Fluid, Electrolyte, and Acid-Base Homeostasis

- Disorders of Water Balance

 - Dehydration – water output exceeds water intake

 - Hemorrhage
 - Severe burns
 - Prolonged vomiting
 - Diarrhea
 - Profuse sweating
 - Water deprivation
 - Diabetes mellitus
 - Diabetes insipidus

(a) Mechanism of dehydration
Fluid, Electrolyte, and Acid-Base Homeostasis

- Hypotonic Hydration – typically this doesn’t happen but can occur during

 - Renal disease
 - Overhydration, *hyptonic hydration*
 - Results in hyponatremia and water moves into cells
 - Must be corrected quickly frequently via the use of mannitol
Fluid, Electrolyte, and Acid-Base Homeostasis

- Edema – review discussion from capillary exchange as to causes

- Electrolyte Balance – usually pertains to salts in the body – most important

 Sodium

 Potassium

 Calcium