Gas Exchange Between Atmosphere and Tissues

• Case Study – Mrs. S from previous case study, suffering from a severe asthma attack

 – Patient taken to ICU, ventilated with an Ambu-bag and oxygen from a portable oxygen tank

 – ABG #1

 • pH 6.92
 • PaCO₂ 122 mmHg (normal, 32 - 48)
 • PaO₂ 161 mmHg (normal, 83 - 108)
 • SaO₂ 98%
 • [HCO₃⁻] 25 mEq/L (normal, 22 - 29); lactic acidosis
 • Base excess −12 mEq/L (> +3 Metabolic Alkalosis - < -3 Metabolic Acidosis)

 – Severe acidosis indicated

 – When asked about bicarbonate by a firefighter, Dr. declined in this case
Gas Exchange Between Atmosphere and Tissues

- Decided to place an endotracheal tube, which she bit through and destroyed the tube, administered Valium (diazepam) intravenously.

- Once endotracheal tube was in place, ventilated with an Ambu-bag and gurgling sounds in the stomach were heard, realized that they were in the wrong tube!

- Patient becoming more animated, more valium may affect the respiratory center, called for respiratory specialist, continued to ventilate with Ambu-bag.

- Also administered aminohyline, hydrocortisone, erythromycin intravenously via a drip.

- Specialist arrived, decided to use morphine instead of valium since an antidote can be used if severe reactions occur (Naloxone).
Gas Exchange Between Atmosphere and Tissues

- Endotracheal tube was inserted and hooked to a ventilator set to deliver

 - TV 650 ml
 - 30 resp/min
 - FiO₂ 100%
 - Peak pressure measured 90 cmH₂O

- Albuterol was poured down the tracheal tube, an x-ray was taken along with an order for ABG’s in 20 minutes

- ABG’s #2

 - pH 7.34 [6.92]
 - PaCO₂ 46 mmHg [122]
 - PaO₂ 65 mmHg [161]
 - SaO₂ 91% [98]
 - [HCO₃⁻] 25 mEq/L [25]
 - Base excess –1.3 mEq/L [-12]
Gas Exchange Between Atmosphere and Tissues

- Patient became more conscious, responded to questions by nodding, eyes appeared to be seeing

- PaO_2 was still low (should be around 100), concern arose as to if trache tube might be blocking air flow into the left lung, x-ray was inconclusive, Dr. ordered that trache tube be lifted approximately 1.5 inches and another set of ABG’s be taken

- ABG’s #3 – PaO_2 can’t be read, must be too high since SaO_2 is 100%

 - pH 7.5
 - PaCO_2 24 mmHg
 - PaO_2 ? mmHg
 - SaO_2 100%
 - $[\text{HCO}_3^-]$ 19 mEq/L
 - Base excess -1.0 mEq/L
Gas Exchange Between Atmosphere and Tissues

- Dr. made the following adjustments to the ventilator

 - Kept TV at 650 ml
 - Dropped rate from 30 to 20
 - Decreased FiO₂ from 100 to 50
 - Order another round of ABG’s

- ABG’s #4

 - pH 7.17
 - PaCO₂ 54 mmHg
 - PaO₂ 66 mmHg
 - SaO₂ 91%
 - [HCO₃⁻] 19 mEq/L
 - Base excess −10 mEq/L
Gas Exchange Between Atmosphere and Tissues

- Condition deteriorating
 - Metabolic acidosis
 - Blood pressure low and dropping, 80/60
 - Nurse informed the doctor that Mrs. S’s face was puffy
- Mrs. S heard this and informed the staff that she was taking prednisone
- Determined that the puffyness was not the result of prednisone rather it started after being placed on the ventilator, indication was subcutaneous emphysema
- Surgeon was called, and believed the problem was Mrs. S had a pneumothorax that must be resolved surgically with the placement of a chest tube
- This proved successful – five years later Mrs. S is fine, she takes bronchodilators and prednisone, along with erythromycin at the earliest sign of a respiratory tract infection
Gas Exchange Between Atmosphere and Tissues

• Case Discussion

 – Why was she retaining carbon dioxide during manual ventilation?

 • She was unable to lower intrathoracic pressure enough to get air through constricted passageways

 – Why not give sodium bicarbonate for respiratory acidosis?

 • Generate increased carbon dioxide

 – Would enter cells and lower intracellular pH

 – Affect cardiac muscle contraction, decreasing CO and increasing anaerobic respiration, generating more lactic acid
Gas Exchange Between Atmosphere and Tissues

- What was Mrs. S’s alveolar-arterial oxygen gradient during manual ventilation? – use the Alveolar Gas Equation

 • \((A-a)PO_2 = 203 - 161\)

 • \(= 42\)

 • Normal for a person breathing pure oxygen is < 30 (she was receiving about 50% at this time), the value of 42 is nearly normal indicating that the respiratory membranes are functioning normally

- Was supplemental oxygen really needed? What possible adverse reactions could have been expected had the portable oxygen tank run out of oxygen before reaching the ICU?

 • With a decrease in oxygen from 50% to 21% her PAO_2 would have dropped to 0 and she would have died
Gas Exchange Between Atmosphere and Tissues

- Why bother inserting an endotracheal tube?

 - To avoid air leaks that result when forcing air in at high pressures

- What was Mrs. S’s alveolar-arterial oxygen gradient after intubation?

 - $\text{PAO}_2 = 655$

 - $(A-a) \text{PO}_2 = 590$

 - An increase from 42 to 590
Gas Exchange Between Atmosphere and Tissues

- Why change the ventilator settings in response to ABG #3?
 - pH 7.5
 - PaCO₂ 24 mmHg
 - PaO₂ ? mmHg
 - SaO₂ 100%
 - [HCO₃⁻] 19 mEq/L
 - Base excess –1.0 mEq/L
 - Kept TV at 650 ml
Gas Exchange Between Atmosphere and Tissues

- Dropped rate from 30 to 20

- Decreased FiO₂ from 100 to 50

- A SO₂ in low 90’2 with a PaO₂ between 60 an 70 with a FiO₂ as low as possible is desirable

- Too great a use of high oxygen levels can be harmful if used for more than 24 hrs.
 - Adversely affect ciliary function
 - Interfere with surfactant secretion
 - If inspired air contains little or no nitrogen, when gas moves into the blood little or none remains in the alveoli and they tend to collapse
Gas Exchange Between Atmosphere and Tissues

- Why was Mrs. S given Proventil, aminophylline, hydrocortisone and erythromycin?

 • Proventil (albuterol) – beta$_2$-andrenergic agonist
 - Bronchodilation, by acting on smooth muscle cells, by increasing levels of cAMP
 - Prevents bronchoconstriction by inhibiting release of histamine and other mediators from mast cells

 • Aminophylline (theophylline) – acts like caffeine
 - Increases levels of cAMP
 - Stimulates CNS, respiratory drive
 - Improves cardiac function
Gas Exchange Between Atmosphere and Tissues

• Hydrocortisone (cortisol)
 – Inhibits synthesis of proteins (mediators of bronchoconstriciton such as histamine)
 – What are some of the problems with its use?

• Erythromyocin
 – Inhibits bacterial infections, which can precipitate an intrinsic asthma attack
 – In fact in Mrs. S her WBC was 28,600/cc
Gas Exchange Between Atmosphere and Tissues

- Why did Mrs. S have subcutaneous emphysema (gas bubbles under the skin)? How did it resolve? How could one speed its resolution?

 - What could cause this/

 - A ruptured bulla or blep on the surface of the lung

 - A puncture caused by a broken rib the result of too aggressive CPR

- Resolution

 - Oxygen would rapidly be absorbed by surrounding blood vessels

 - Nitrogen would remain for a longer period of time

- Speeding of Resolution

 - Administering pure oxygen, this would displace the nitrogen and cause a more rapid absorption of the gas under the skin
Gas Exchange Between Atmosphere and Tissues

- Why did Mrs. S’s blood pressure and pH fall when her face got puffy, and what would be the correct response?

 - As a consequence of a Tension Pneumothorax
Gas Exchange Between Atmosphere and Tissues

- Gas Exchange Between Atmosphere and Tissues
Gas Exchange Between Atmosphere and Tissues

- Diffusion Barriers for Oxygen in the Lung
Gas Exchange Between Atmosphere and Tissues

A—NORMAL ALVEOLUS

B—PNEUMONIA

C—CONGESTIVE HEART FAILURE

D—INTERSTITIAL FIBROSIS
Gas Exchange Between Atmosphere and Tissues

- **Oxygen Transport from Lungs to Tissues**
 - 1.5% dissolved in plasma
 - 98.5% carried with Hb inside of RBC’s as oxyhemoglobin
 - Association of Hb with oxygen is affected by five factors
 - pO_2 – the greater the pO_2 the more oxygen will combine with Hb, until the Hb becomes saturated
 - pCO_2 – the lower the partial pressure of carbon dioxide greater the affinity of the Hb molecule for oxygen
 - Acidity pH – in a lower (more acidic) pH oxygen will dissociate from Hb and be released (frequently related to high carbon dioxide)
 - Temperature – as temperature increases, so does the the amount of oxygen released from Hb
 - BPG (2,3 biphosphoglycerate) – a chemical formed inside RBC’s during glycolysis – the higher the levels of BPG the more oxygen is released by Hb
Gas Exchange Between Atmosphere and Tissues

[Graph showing the relationship between PaO₂ (mmHg) and SaO₂ (%) with various factors like pH, PaCO₂, 2,3-DPG, and temperature affecting the curves.]
• Carbon Dioxide Transport from Lungs to Tissues

 – 5% dissolved in plasma

 – 30% carried by Hb as carbaminohemoglobin and other proteins in the blood (carbamino compounds)

 – 65% converted to bicarbonate (HCO⁻) ions