Integration of Respiration and Circulation

• Respiratory Failure

 – Either hypoxemia or hypercapnia, signs and symptoms for both are vague at best

 – To really determine blood gases are used, respiratory distress defined as

 • $\text{PaO}_2 < 50 \text{ mmHg}$
 • $\text{PaCO}_2 > 50 \text{ mmHg}$
Integration of Respiration and Circulation

- Case Study – Adult Respiratory Distress Syndrome (ARDS)
 - Mr. B, blood pressure low, difficulty breathing
 - Mr. B is on a rehabilitation ward, treated for alcoholism, diverticulitis, schizophrenia, and a seizure disorder
 - Appeared older than his years, 55
 - Ashen gray
 - Sweat on forehead
 - Breathing rapidly
 - Shallow breaths requiring a great deal of effort
 - Using accessory muscles for inspiration, demonstrated supraclavicular and suprasternal depressions
Integration of Respiration and Circulation

- Not cyanotic

- Mr. B’s bed sheets were blood stained and dark yellow urine was in the bag by the side of his bed

- When asking about the blood and urine, nurse replied
 - Bleeding into sheets the result of diverticulitis
 - Only produced 350 ml’s over the last three shifts

- Blood pressure could not be measured using auscultation, rather palpation was used, 65

- Pulse 110 b/min, feeble but regular

- Respiration 26 b/min, shallow and labored

- Oral temp 102° F
Integration of Respiration and Circulation

- Skin was dry and tented when pinched over the sternum
- Neck veins flat when lying semirecumbent
- Lung sound faint with rhonchi
- First and second heart sounds soft with no gallops or murmurs
- Initial diagnosis, septic shock with respiratory distress
- Ordered oxygen and admittance into ICU
- While in ICU and ECG was performed
Integration of Respiration and Circulation

- A = prior to endotracheal tube, sinus tachycardia
- B = during insertion of trache, bradycardia
- C = following injection of atropine, sinus bradycardia, first degree AV block
Integration of Respiration and Circulation

- Blood was drawn for
 - Hematologic tests
 - Chemical analysis
 - Bacterial culture
 - Typing and cross matching

- Patient infused with 0.9% saline, 200 ml/hr, with a dopamine drip to raise blood pressure to 90

- Switched from the portable oxygen tank to a face mask connected to a non-breathing oxygen bag (increased inspired oxygen from 40 to 100%, 20 minutes later blood gases were determined
Integration of Respiration and Circulation

- ABG #1
 - pH 7.26
 - PaCO₂ 49 mmHg
 - PaO₂ 33 mmHg
 - SaO₂ 54%
 - [HCO₃⁻] 22 mEq/L
 - Base excess -5

- Based on the above results, patient was intubated and placed on a respirator with PEEP (positive end expiratory pressure), a Swan-Ganz catheter was used for precise cardiac monitoring

- Upon inserting the tube Mr. B’s pulse dropped from 130 to 40 b/min, administered atropine, pulse rose to 65 b/min
Integration of Respiration and Circulation

- Ventilator was set to the following
 - TV 800 ml
 - Respiratory rate 16 b/min
 - FiO₂ 1

- Swan-Ganz #1
 - Central Venous Pressure, CVP 2 mmHg
 - Mean pulmonary artery pressure, Pa 6.5 mmHg
 - PAWP 4 mmHg
 - CO 2.5 L/min

- Systemic Arterial Pressure (on dopamine drip) 90/60 mmHg

- Patient given
 - Saline increased from 250 to 500 ml/hr
 - Ceftazdime (cephalosporin derivative, anti-gram-negative bacterial agent)
 - Vancomycin (anti-gram-positive bacterial agent)
Integration of Respiration and Circulation

- Swan-Ganz #2 - 1 hour later
 - PAWP 10 mmHg
 - CO 4 L/min

- Swan-Ganz #3 - 1 hour later
 - PAWP 12 mmHg
 - CO 5 L/min

- Chest x-ray shows fluffy peripheral infiltrates throughout both lung fields, giving a hazy almost ground glass appearance

- Mr. B went into seizure, Dr. ask for latest blood gases

- ABG #2
 - pH 7.53
 - PaCO₂ 25 mmHg
 - PaO₂ 40 mmHg
 - SaO₂ 75%
 - [HCO₃⁻] 20 mEq/L
Integration of Respiration and Circulation

- Dr. ordered the following
 - Decrease ventilation rate from 16 to 10 b/min
 - Set ventilator to 10 cmH₂O PEEP
 - Repeat blood gases in 30 minutes, including a mixed venous PO₂ from a blood sample collected with the Swan-Ganz catheter

- Seizure stopped

- ABG #3
 - pH 7.3
 - PaCO₂ 38 mmHg
 - PaO₂ 150 mmHg
 - SaO₂ 99%
 - [HCO₃⁻] 19 mEq/L
 - Base excess -5
 - PᵥO₂ 28 mmHg
 - SᵥO₂ 55%
Integration of Respiration and Circulation

- Swan-Ganz #4
 - PAWP 18 mmHg
 - CO 4 L/min

- In response to the previous findings, Dr. ordered
 - Decrease PEEP from 10 to 2.5 cmH₂O
 - Decrease FiO₂ from 1 to .6
 - Infuse with 2 unit of whole blood
 - Repeat ABG’s in 30 minutes

- ABG #4
 - pH 7.4
 - PaCO₂ 40 mmHg
 - PaO₂ 60 mmHg
 - SaO₂ 89%
 - Base excess 0
 - PVO₂ 35
 - SVO₂ 63%
Integration of Respiration and Circulation

- Swan-Ganz #5
 - PAWP 15 mmHg
 - CO 5 L/min

- Mr. B is now alert, can respond to questions by nodding his head

- ECG and blood enzymes show no indication of an MI

- Blood chemistry showed
 - Glucose 178 mg/dL (65 – 110)
 - BUN 27 mg/dL (10 -20)
 - Creatinine 1.2 mg/dL (0.7 – 1.4)
 - Na 158 mEq/L (135 – 145)
 - K 4.7 mEq/L (3.5 – 5.0)
 - Cl 115 mEq/L (96 – 106)
 - Ca 7 mg/dl (8.5 – 11)
 - Mg 2.5 mg/dL (1.5 – 2.5)
 - Total protein 4.5 gm/dL (6.0 – 8.6)
 - Albumin 2 gm/dL (3.2 – 6.0)
Integration of Respiration and Circulation

- Hematology report showed

 - WBC 29,400/mm
 - Hb 8.3 g/dL
 - Hct 26%
 - Prothrombin time 22 sec (normal 11)
 - Partial thromboplastin time (PTT) 90 sec (normal 30)
 - Fibrinogen 300 mg/dL (normal)
 - Hb rose to 11 g/dL after transfusion

- Blood culture showed

 • *Pseudomonas aeruginosa* – sensitive to cephalosporins (ceftazidime) therefore it was continued and Vancomycin was discontinued
Integration of Respiration and Circulation

• Case Discussion

 – What caused Mr. B’s low blood pressure?
 • Endotoxins from septicemia caused
 – Fever
 – Chills
 – Vasodilation
 • Decreased fluid volume, dehydration (tenting skin, small vol. concentrated urine)
 • Diminished myocardial contractility (acidemia)
 – Why was 0.9% NaCl infused?
 • To increase volume prior to whole blood becoming available
Integration of Respiration and Circulation

- Why was dopamine infused?
 - Remember, acts as a vasodilator at low doses and a vasoconstrictor at high doses
 - In this case high doses were being used to increase SVR to raise BP (>90)

- Why was PEEP not used initially?
 - Problem with PEEP is that it keeps a positive pressure in the alveoli, making intrathoracic pressure positive, pressing on large blood vessels returning to the heart and diminishing venous return – reduced CO was already a problem
 - Why when PEEP at 10 cmH₂O did the CO drop to 4 L/min, while the PAWP increased to 18
 - Compression on Lft atria by increased intrathoracic pressure
 - PEEP was adjusted to 2.5 cmH₂O and 2 units of whole blood were given
Integration of Respiration and Circulation

- Why was atropine administered?

 - Mr. B was experiencing bradycardia because of excessive stimulation of the SA node by acetylcholine (causes hyperpolarization) therefore the AV was acting as the pace maker

 - Atropine inhibits the action of acetylcholine and restored the normal pace making of the SA node with the return of P waves
Integration of Respiration and Circulation

- Why did Mr. B show suprasternal and supraclavicular retractions on inspiration

 • Greatly reduced intrathoracic pressure during forced inspirations

 • Why was he forcing inspirations?

 - Low lung compliance for two reasons:

 » Deficiency of surfactant because of a decreased perfusion of upper lobes of the lung and their inability to produce surfactant

 » Pulmonary edema the result of inflammation of capillary endothelium because of hypoxia – inflammation products causing leaking of proteins from capillaries, reducing capillary oncontic pressure – this was even more of a problem because of Mr. B’s drinking problem (Why? Hint: liver)
Integration of Respiration and Circulation

- Why was Mr. B tachpneic?

 • Stimulation of peripheral chemoreceptors

 • Because compliance was already low, stretch receptors were stimulated prematurely causing the lungs to deflate sooner, shallow breaths

- Why was Mr. B using his accessory muscles of inspiration?

- Why was Mr. B not cyanotic?

 • Being anemic, there was enough oxygen to saturate the hemoglobin that he did have enough so that it was not cyanotic
Integration of Respiration and Circulation

- Why was the PaCO₂ value elevated in ABG’s #1?

 - Although physiological mechanisms were in place to try to get Mr. B to breathe more effectively the work of breathing was too great and he was experiencing exhaustion – his work of breathing was increased for two reasons

 - An increase in physiologic dead space the result of poor lung perfusion, especially to the upper lobes

 - The decrease in lung compliance

- What was the significance of the low PaO₂ value in ABG’s #1?

 - A PaO₂ of 33 is very low requiring immediate attention

 - There were two major reasons for Mr. B’s hypoxia, what were they?

 - Poor perfusion increasing physiologic dead space

 - Shunting of blood through poorly ventilated areas of the lung
Integration of Respiration and Circulation

- Why was there a base deficit in Mr. B when he was being ventilated with high PEEP?

 - Increased lactic acid production because of hypoxia

 - Decreased capacity for Mr. B’s liver to metabolize the lactic acid